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Abstract This paper proposes a new efficient approach for obtaining approximate
series solutions to fourth-order two-point boundary value problems. The proposed
approach depends on constructing Green’s function and Adomian decomposition
method (ADM). Unlike existing methods like ADM or modified ADM, the proposed
approach avoids solving a sequence of nonlinear equations for the undetermined coef-
ficients. In fact, the proposed method gives a direct recursive scheme for obtaining
approximations of the solution with easily computable components. We also discuss
the convergence and error analysis of the proposed scheme. Moreover, several numer-
ical examples are included to demonstrate the accuracy, applicability, and generality
of the proposed approach. The numerical results reveal that the proposed method is
very effective and simple.
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1 Introduction

Accurate and fast numerical solution of two-point boundary value ordinary differential
equations is necessary in many important scientific and engineering applications, e.g.,
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heat and mass transfer within porous catalyst particle [1], oxygen diffusion in cells
[2], astrophysics, hydrodynamic and hydromagnetics stability, boundary layer theory,
the study of stellar interiors, control and optimization theory, and flow networks in
biology. Fourth-order BVPs for ordinary differential equation have attracted much
attention in recent years. Such problems arise in the study of mathematical modeling
of viscoelastic and inelastic flows [3], deformation of beams [4] and plate deflection
theory [5,6].

The aim of this article is to propose an efficient technique to solve a general linear as
well as nonlinear fourth-order BVPs. The proposed technique is based on the Adomian
decomposition method and the Green’s function technique, here we transform fourth-
order BVPs into an equivalent Fredholm-integral equation before establishing the
recursive scheme for the solution. Consider the following fourth-order BVPs [7–10]:

u(iv)(x) = g(x)+ f (x, u(x), u′(x), u′′(x), u′′′(x)), x ∈ J = [0, b], (1.1)

subject to the boundary conditions

u(0) = α1, u′(0) = α2, u(b) = α3, u′(b) = α4, (1.2)

where αi , i = 1, 2, 3, 4 are finite real constants. We assume that f (x, u, u′, u′′, u′′′)
is continuous on D = {[0, b] × R

4} and is not identically zero.
There is considerable literature on the numerical treatment of fourth-order BVPs

[5,7–17] and the references cited therein. Various efficient numerical techniques have
been used to deal with such BVPs, such as finite difference method (FDM) [5,17].
Although, these techniques are very efficient and have many advantages, but a huge
amount of computational work is needed which combines some root-finding tech-
niques for obtaining accurate numerical solution especially for nonlinear fourth-order
BVPs. Recently, some newly developed numerical-approximate methods have also
been applied for the solution of BVPs (1.1), (1.2), such as Adomian decomposi-
tion method (ADM) and modified ADM (MADM) [7,8,18], homotopy perturbation
method (HPM), homotopy analysis method (HAM) [10,12] and the differential trans-
form method (DTM) [15,16]. The variational iteration method (VIM) and modified
VIM were also used in [13,14]. However, methods like VIM or modified VIM fail to
solve the equation when the nonlinear function is of the form eu, ln(u), sin u, sinh u...
etc., see Wazwaz and Rach [19] for more details. Nevertheless, applications of VIM
for solving nonlinear problems are very restrictive.

Furthermore, note that solving nonlinear fourth-order BVPs using ADM or MADM
is always a computationally involved task. Since, it requires the computation of
unknown constants in a sequence of nonlinear algebraic or difficult transcendental
system of equations which increases the computational work (see [20]). Moreover, in
some cases, the unknown constants may not be uniquely determined and this may be
the major disadvantage of these methods for solving fourth-order BVPs.

The objective of this work is to propose a modification of the ADM which com-
bines with Green’s function to overcome the difficulties occurring in the ADM or
MADM for solving two-point fourth-order BVPs (1.1), (1.2). This methodology relies
on constructing Green’s function before establishing the recursive scheme for the
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solution components. Unlike ADM or MADM, the proposed method avoids solving
a sequence of transcendental equations for the undetermined coefficients. In other
words, we develop a direct scheme for obtaining approximate series solutions. The
approximations of the solution are obtained in the form of series with easily cal-
culable components. For the completeness, the convergence and error analysis of the
proposed scheme is supplemented. Moreover, several numerical examples are included
to demonstrate the accuracy, applicability, and generality of the proposed scheme.

2 Review of classical ADM/MADM

In this section, we briefly describe ADM or MADM for solving fourth-order BVPs
(1.1), (1.2). It is well-known that ADM allows us to solve both nonlinear IVPs and
BVPs without unphysical restrictive assumptions such as linearization, discretization,
perturbation and guessing the initial term or a set of basis function. Recently, many
researchers [7,8,11,20–32] have applied the ADM or MADM for solving the different
scientific models. According to the ADM, BVPs (1.1), (1.2) can be written in operator
form as

Lu(x) = g(x)+ Nu(x), x ∈ J, (2.1)

subject to the boundary conditions

u(0) = α1, u′(0) = α2, u(b) = α3, u′(b) = α4, (2.2)

where L = d4

dx4 is a fourth-order linear differential operator, Nu(x) = f (x, u, u′, u′′,
u′′′) denotes the nonlinear function and g(x) is known function. The inverse operator
of L is defined as

L−1[·] =
x∫

0

x∫

0

x∫

0

x∫

0

[·]dxdxdxdx . (2.3)

By operating L−1[·] on both sides of (2.1) and using the conditions u(0) = α1 and
u′(0) = α2, we obtain

u(x) = α1 + α2x + c1x2 + c2x3 + L−1[g(x)+ Nu(x)], (2.4)

where c1 = u′′(0)
2 and c2 = u′′(0)

6 are unknown constants be determined.
Then the solution u(x) and the nonlinear function Nu(x) are decomposed by

u(x) =
∞∑
j=0

u j (x) and Nu(x) =
∞∑
j=0

A j , (2.5)
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where A j , j = 0, 1, . . . are Adomian’s polynomials which can be calculated for
various classes of nonlinear functions with the formula given in [31] as

An = 1

n!
dn

dλn

[
N

( ∞∑
k=0

ukλ
k

)]
λ=0

, n = 0, 1, 2, . . . (2.6)

Several algorithms have been given to generate the Adomian polynomial rapidly in
[26,33–36]. One of the convenient formula for Adomian polynomials is Rach’s rule

An =
n∑

k=1

f k(u0)C(k, n), n = 0, 1, 2, . . .

where C(k, n) denotes sums of all possible products of k components from
u1, u2, . . . , un−k+1,whose subscripts sum to n, divided by the factorial of the number
of repeated subscripts [35]. The list of first few Adomian polynomials for nonlinear
function f (u) is given below

A0 = f (u0),

A1 = u1 f ′(u0),

A2 = u2 f ′(u0)+ 1
2 u2

1 f ′′(u0),

A3 = u3 f ′(u0)+ u1u2 f ′′(u0)+ 1
6 u3

1 f (3)(u0).

⎫⎪⎪⎬
⎪⎪⎭

where A j depending on the solution components on u0, u1, . . . , u j .
By substituting the series (2.5) into (2.4), we get

∞∑
j=0

u j (x) = α1 + α2x + c1x2 + c2x3 + L−1[g(x)] + L−1

⎡
⎣ ∞∑

j=0

A j

⎤
⎦ . (2.7)

Comparing both sides of (2.7), the ADM admits the following scheme:

u0(x) = α1 + α2x + c1x2 + c2x3 + L−1[g(x)],
u j (x) = L−1[A j−1], j ≥ 1.

}
(2.8)

Wazwaz [37] suggested a modified ADM (MADM) which is given by the scheme:

u0(x) = α1,

u1(x) = α2x + c1x2 + c2x3 + L−1[g(x)] + L−1[A0],
u j (x) = L−1[A j−1], j ≥ 2.

⎫⎬
⎭ (2.9)

The schemes (2.8) and (2.9) provide the complete determination of the components
un(x) of the solution u(x). Hence, the n-term approximate series solution can be
obtained by
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φn(x, c1, c2) =
n∑

j=0

u j (x, c1, c2), (2.10)

Note that the n-term truncated series solution φn(x, c1, c2) depends on the unknown
constants c1 and c2. These unknown constants will be determined approximately by
imposing the boundary condition at x = b on φn(x, c1, c2), which leads a sequence
of nonlinear system of equations as

φn(b, c1, c2) = α3,

φ′
n(b, c1, c2) = α4, n ≥ 1.

}
(2.11)

Solving the nonlinear system (2.11) for unknown constants c1 and c2, a huge amount
of computational work is needed which combines some root-finding techniques such
as Newton’s methods. However, in some cases, these unknown constants c1 and c2
may not be determined uniquely. This is the main drawback of ADM or MADM for
solving fourth-order BVPs. In order to avoid solving the nonlinear system (2.11) for
unknowns constants, we propose an efficient algorithm based on ADM and the Green’s
function technique.

3 Decomposition method with Green’s function

In this section, we propose an efficient recursive scheme for solving two-point fourth-
order BVPs of the form (1.1), (1.2). To this end, we first consider the following
homogeneous fourth-order BVPs as

{
P(iv)(x) = 0, x ∈ J,
P(0) = α1, P ′(0) = α2, P(b) = α3, P ′(b) = α4.

(3.1)

The unique solution of BVP (3.1) is given by

P(x)=α1+α2x− (3α1+2bα2−3α3+bα4)

b2 x2 − (−2α1 − bα2 + 2α3 − bα4)

b3 x3.

(3.2)

To construct Green’s function of BVPs (1.1), (1.2), we consider the fourth-order linear
BVP with homogeneous boundary conditions as

{
u(iv)(x) = F(x), x ∈ J,
u(0) = u′(0) = u(b) = u′(b) = 0.

(3.3)
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The Green’s function of (3.3) can easily be constructed and it is given by

G(x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

x3
(

−1

6
+ ξ2

2b2 − ξ3

3b3

)
+ x2

(
ξ

2
− ξ2

b
+ ξ3

2b2

)
, 0 ≤ x ≤ ξ,

ξ3
(

−1

6
+ x2

2b2 − x3

3b3

)
+ ξ2

(
x

2
− x2

b
+ x3

2b2

)
, ξ ≤ x ≤ b.

(3.4)

It is easy to check that the function G(x, ξ) satisfies all the properties of Green’s
function.

Using (3.2) and (3.4), we transform the original nonlinear fourth-order BVPs (1.1),
(1.2) into the Fredholm integral equation as

u(x) = P(x)+
b∫

0

G(x, ξ)
[
g(ξ)+ f (ξ, u(ξ), u′(ξ), u′′(ξ), u′′′(ξ))

]
dξ. (3.5)

Note that the Eq. (3.5) does not involve any unknown coefficients to be determined.
We next decompose the solution u(x) and the nonlinear function f (x, u, u′, u′′, u′′′)

by a series as

u(x) =
∞∑
j=0

u j (x) and f (x, u, u′, u′′, u′′′) =
∞∑
j=0

A j , (3.6)

where A j are Adomian’s polynomials. In 2010, Duan [33,34] suggested several new
efficient algorithms for rapid computer-generation of the Adomian’s polynomials.
Recently, Kalla [38] reported another more efficient programmable formula for Ado-
mian’s polynomials as

An = f (x, ψn, ψ
′
n, ψ

′′
n , ψ

′′′
n )−

n−1∑
j=0

A j or f (x, ψn, ψ
′
n, ψ

′′
n , ψ

′′′
n ) =

n∑
j=0

A j

(3.7)

where ψn = ∑n
j=0 u j is the partial sum of the series solution u = ∑∞

j=0 u j .
Substituting the series (3.6) into (3.5), we obtain

∞∑
j=0

u j (x) = P(x)+
b∫

0

G(x, ξ)

⎡
⎣g(ξ)+

∞∑
j=0

A j

⎤
⎦ dξ. (3.8)

Comparing both sides of (3.8), we have the following recursive scheme

u0(x) = P(x)+
∫ b

0
G(x, ξ)g(ξ)dξ,

u j (x) =
∫ b

0
G(x, ξ)A j−1dξ, j ≥ 1.

⎫⎪⎪⎬
⎪⎪⎭

(3.9)
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We further modify the above recursive scheme (3.9) to get a more efficient and
economic algorithm. To do this, the zeroth component u0(x) is divided into the
sum of two parts, namely g0(x) + g1(x), where g0(x) = α1 and g1(x) = α2x −
(3α1+2bα2−3α3+bα4)

b2 x2 − (−2α1−bα2+2α3−bα4)

b3 x3 + ∫ b
0 G(x, ξ)g(ξ)dξ. The first part,

g0(x), is kept in u0(x) and the rest part, g1(x), is added to u1(x). Consequently, we
have a new modified recursive scheme as

u0(x) = α1,

u1(x) = g1(x)+
∫ b

0
G(x, ξ)[g(ξ)+ A0]dξ,

u j (x) =
∫ b

0
G(x, ξ)A j−1dξ, j ≥ 2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.10)

The recursive schemes (3.9) and (3.10) provide the complete determination of solution
components u j (x) of the solution u(x). Hence, the n-term truncated series solution
can be obtained as

ψn(x) =
n∑

j=0

u j (x). (3.11)

Note 3.1 Unlike existing methods such as ADM or MADM, the proposed recursive
schemes (3.9) and (3.10) do not involve any undetermined coefficients to be deter-
mined. In other words, it avoids solving a sequence of nonlinear algebraic or transcen-
dental equations for the undetermined coefficients. It can be noted that the proposed
recursive scheme (3.9) gives good approximate solution when the problem is linear
or nonlinear of the form un, uu′, u′n ... while the proposed modified scheme (3.10) is
useful when the nonlinear function is of the form eu, ln u, sin u, cosh u... etc.

4 Convergence analysis

In this section, we shall discuss the convergence analysis and the error estimation of the
proposed recursive scheme (3.9) for nonlinear fourth-order BVPs (1.1), (1.2). Remark
that many authors [39–41] have already discussed the convergence of the ADM for
differential and integral equations. Let X = C3[0, b] be the Banach space with the
norm

‖u‖ =
3∑

i=0

max
x∈J

∣∣∣u(i)(x)
∣∣∣ , u ∈ X. (4.1)

Now, we rewrite the integral Eq. (3.5) in the operator equation form as

u = N (u), (4.2)
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where N : X → X is a nonlinear operator given by

N (u) = P(x)+
b∫

0

G(x, ξ)[g(ξ)+ f (ξ, u(ξ), u′(ξ), u′′(ξ), u′′′(ξ))]dξ. (4.3)

We next discuss the existence of the unique solution of the Eq. (4.2).

Theorem 4.1 (Banach Contraction Principle:) Let X be the Banach space with the
norm given by (4.1). Assuming that the f is uniformly Lipschitz continuous such that

| f (x, u, u′, u′′, u′′′)− f (x, v, v′, v′′, v′′′)| ≤
3∑

i=0

Ki |u(i) − v(i)|,

where Ki , i = 0, 1, 2, 3 are Lipschitz constants. Further, let δ be a constant defined
as

δ := 4M K ,

where M = max
i∈{0,1,2,3}

{
max
x∈J

∫ b

0

∣∣∣∣ ∂
i

∂xi
(G(x, ξ))

∣∣∣∣ dξ

}
and K = max{K0, K1, K2, K3}.

If δ < 1, then the Eq. (4.2) has a unique solution u in X.

Proof For i = 0, 1, 2, 3 and for any u, v ∈ X, and using the Lipschitz continuity of
f , we obtain

|(N u − N v)(i)(x)| ≤
b∫

0

∣∣∣∣ ∂
i

∂xi
(G(x, ξ))

∣∣∣∣
∣∣ f (ξ, u(ξ), u′(ξ), u′′(ξ), u′′′(ξ))

− f (ξ, v(ξ), v′(ξ), v′′(ξ), v′′′(ξ))
∣∣dξ,

≤ max
ξ∈J

3∑
i=0

Ki |ui (ξ)− vi (ξ)| ×
⎛
⎝max

x∈J

b∫

0

∣∣∣∣ ∂
i

∂xi
(G(x, ξ))

∣∣∣∣ dξ

⎞
⎠ ,

≤ M K‖u − v‖,

where M = max
i∈{0,1,2,3}

{
max
x∈J

∫ b

0

∣∣∣∣ ∂
i

∂xi
(G(x, ξ))

∣∣∣∣ dξ

}
and K = max{K0, K1, K2, K3}.

Thus we have

|(N u − N v)(i)(x)| ≤ M K‖u − v‖, for i = 0, 1, 2, 3. (4.4)
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Using the estimates (4.4) for i = 0, 1, 2, 3, we obtain

‖N u − N v‖ =
3∑

i=0

max
x∈J

|(N u − N v)(i)(x)| ≤ 4M K‖u − v‖,

≤ δ‖u − v‖, (4.5)

where δ = 4M K . If δ < 1, then the nonlinear N : X → X is contraction mapping
and hence by the Banach contraction mapping theorem, the Eq. (4.2) has a unique
solution in X. 	

We now rewrite the proposed method (3.9) in operator form as follows. Let {ψn =∑n

j=0 u j } be a sequence of partial sums of the series solution u = ∑∞
j=0 u j . Using

the recursive scheme (3.9) and the n-term series solution (3.11), we have

ψn = u0 +
n∑

j=1

u j = P(x)+
n∑

j=1

⎡
⎣

b∫

0

G(x, ξ)
[
g(ξ)+ A j−1

]
dξ

⎤
⎦ ,

= P(x)+
b∫

0

G(x, ξ)

⎡
⎣g(ξ)+

n−1∑
j=0

A j

⎤
⎦ dξ. (4.6)

Using (3.7) in (4.6), it follows that

ψn = P(x)+
b∫

0

G(x, ξ)[g(ξ)+ f (ξ, ψn−1, ψ
′
n−1, ψ

′′
n−1, ψ

′′′
n−1)]dξ. (4.7)

which is equivalent to the following operator equation

ψn = N (ψn−1), n = 1, 2, . . . . (4.8)

In the following theorem, we shall give the convergence of the sequence {ψn} defined
by (4.8) to the exact solution u of the Eq. (4.2).

Theorem 4.2 Let N be the nonlinear operator defined by (4.3) is contractive, that is,
‖N (u) − N (u∗)‖ ≤ δ‖u − u∗‖, ∀ u, u∗ ∈ X with δ < 1 and ‖u1‖ < ∞. Then the
sequence {ψn} of the partial sums given by (4.8) converges to the exact solution u of
(4.2).

Proof Using the relation (4.8) and the fact that nonlinear operator N is contractive,
we have

‖ψm+1 − ψm‖ = ‖N (ψm)− N (ψm−1)‖ ≤ δ‖ψm − ψm−1‖.
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Thus, we have

‖ψm+1 − ψm‖ ≤ δ‖ψm − ψm−1‖ ≤ δ2‖ψm−1 − ψm−2‖ ≤ . . . ≤ δm‖ψ1 − ψ0‖.

For all n,m ∈ N, with n > m, consider

‖ψn − ψm‖ = ‖(ψn − ψn−1)+ (ψn−1 − ψn−2)+ · · · + (ψm+1 − ψm)‖,
≤ ‖ψn − ψn−1‖ + ‖ψn−1 − ψn−2‖ + · · · + ‖ψm+1 − ψm‖,
≤ [δn−1 + δn−2 + · · · + δm]‖ψ1 − ψ0‖,
= δm[1 + δ + δ2 + · · · + δn−m−1]‖ψ1 − ψ0‖,
= δm

(
1 − δn−m

1 − δ

)
‖u1‖.

Since 0 < δ < 1, we have (1 − δn−m) < 1. It readily follows that

‖ψn − ψm‖ ≤ δm

1 − δ
‖u1‖. (4.9)

Letting m → ∞, we obtain

‖ψn − ψm‖ → 0.

Hence {ψn} is cauchy sequence in X. Hence there exitsψ in X such that lim
n→∞ψn = ψ .

Note that ψ is the exact solution of the Eq. (4.2) as

u =
∞∑

n=0

un = lim
n→∞ψn = ψ.

This completes the proof. 	

Finally, we provide an error estimates for the truncated series solution in the following
theorem.

Theorem 4.3 Let u be the exact solution of the operator Eq. (4.2). Let ψm be the
sequence of approximate series solutions defined by (3.11). Then there holds

‖u − ψm‖ ≤ 4Mδm

1 − δ
max
ξ∈J

| f (ξ, u0, u′
0, u′′

0, u′′′
0 )|.

Proof For any n ≥ m, and using the estimate (4.9), we have

‖ψn − ψm‖ ≤ δm

1 − δ
‖u1‖. (4.10)
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Since lim
n→∞ψn = u, fixing m and letting n → ∞ in the estimate (4.10), we obtain

‖u − ψm‖ ≤ δm

1 − δ

3∑
i=0

max
x∈J

∣∣∣u(i)1 (x)
∣∣∣ , (4.11)

Since u1(x) = ∫ b
0 G(x, ξ)A0dξ and A0 = f (ξ, u0, u′

0, u′′
0, u′′′

0 ), we have

3∑
i=0

max
x∈J

∣∣∣u(i)1 (x)
∣∣∣≤

3∑
i=0

⎛
⎝max

x∈J

b∫

0

∣∣∣∣ ∂
i

∂xi
(G(x, ξ))

∣∣∣∣ dξ

⎞
⎠× max

ξ∈J
| f (ξ, u0, u′

0, u′′
0, u′′′

0 )|,

≤ 4M max
ξ∈J

| f (ξ, u0, u′
0, u′′

0, u′′′
0 )|, (4.12)

where M = max
i∈{0,1,2,3}

{
max
x∈J

∫ b

0

∣∣∣∣ ∂
i

∂xi
(G(x, ξ))

∣∣∣∣ dξ

}
.

Combining the estimates (4.11) and (4.12), we obtain

‖u − ψm‖ ≤ 4Mδm

(1 − δ)
max
ξ∈J

| f (ξ, u0, u′
0, u′′

0, u′′′
0 )|. (4.13)

which completes the proof. 	


5 Numerical results

To demonstrate the accuracy and applicability of the proposed method (3.9) and (3.10),
we have solved several linear as well as nonlinear fourth-order BVPs. All numerical
results obtained by the proposed method are compared with the known results.

Example 5.1 We first consider the following nonlinear fourth-order BVP

u(iv)(x) = e−x u2(x), 0 < x < 1,
u(0) = u′(0) = 1, u(1) = u′(1) = e.

}
(5.1)

The analytical solution is u(x) = ex .

According to the proposed method (3.9), with α1 = α2 = 1, α3 = α4 = e and b = 1.
Consequently, we have the following recursive scheme as

u0(x) = 1 + x + (−5 + 2e)x2 + (3 − e)x3,

u j (x) =
∫ 1

0
G(x, ξ)e−ξ A j−1dξ, j = 1, 2, . . . ,

⎫⎬
⎭ (5.2)

where the Green’s function G(x, ξ) is given by (3.4). Using the formula (2.6), we
obtain the Adomian’s polynomials for the nonlinear function f (u(x)) = u2(x) as
follows
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A0 = u2
0(x),

A1 = 2u0(x)u1(x),
A2 = 2u0(x)u2(x)+ u2

1(x),
...

An = ∑n
j=0 u j (x)un− j (x).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.3)

In view of (5.2) and (5.3), we obtain

u0(x) = 1 + x + 0.436564x2 + 0.281718x3

u1(x) = 0.063189x2 − 0.114671x3 + 0.041666x4 + 0.008333x5 + 0.001036x6

+ 0.000472x7 − 0.000022x8 + · · ·
u2(x) = −5.8207 × 10−11x + 0.000245x2 − 0.000378x3 − 2.008164 × 10−9x4

+ 2.015440 × 10−9x5 + 0.000351x6 − 0.0002730x7 + 0.000044x8 + · · ·
...

Hence, the truncated series solution is obtained as

ψ2(x) = 1 + x + 0.499999x2 + 0.166669x3 + 0.041666x4 + 0.008333x5

+ 0.001387x6 + 0.0001993x7 + 0.0000224x8 + · · ·

Note that all above components are computed by computer algebra system, such as
‘MATHEMATICA’. For quantitative comparison, we define the absolute error func-
tions as

En(x) = |ψn(x)− u(x)| and en(x) = |φn(x)− u(x)|,

where u(x) is analytical solution, andψn(x) andφn(x) are n-term truncated series solu-
tions obtained by the proposed method (3.9) and MADM (2.9), respectively. Table 1
shows the comparison between maximum absolute errors obtained by the proposed

Table 1 Comparison of the numerical results for Example 5.1

x Proposed scheme MADM

|ψ1 − u| |ψ2 − u| |φ1 − u| |φ2 − u|
0.0 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00

0.2 6.8394E−06 3.5093E−08 9.8731E−04 2.5393E−04

0.4 1.6126E−05 8.2634E−08 2.4344E−03 6.5884E−04

0.6 1.6216E−05 8.2376E−08 2.6536E−03 7.6074E−04

0.8 6.9463E−06 3.4819E−08 1.2801E−03 3.9010E−04

1.0 0.0000E−00 0.0000E−00 0.0000E−00 1.5543E−14
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method (3.9) and MADM (2.9). It is readily observed that the proposed method (3.9)
provides not only better numerical results but also avoids solving difficult system of
equations for unknown coefficients.

Example 5.2 Consider the following nonlinear fourth-order BVP [42]

u(iv)(x) = g(x)+ u2(x), 0 < x < 1,
u(0) = u′(0) = 0, u(1) = u′(1) = 1

}
(5.4)

where g(x) = −x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x − 48. The analytical
solution is u(x) = x5 − 2x4 + 2x2.

According to the proposed method (3.9) with α1 = α2 = 0, α3 = α4 = 1 and b = 1.
Consequently,

u0(x) = 2x2 − x3 + ∫ 1
0 g(ξ)G(x, ξ)dξ,

u j (x) = ∫ 1
0 G(x, ξ)A j−1dξ, j ≥ 1.

}
(5.5)

Using the scheme (5.5) and the Adomian’s polynomials (5.3), we calculate the
components as follows

u0(x) = 1.99401x2 + 0.007435x3 − 2x4 + x5 − 0.002380x8 + 0.001587x10

− 0.000505x11 − 0.000336x12 + 0.000233x13 − 0.000041x14,

u1(x) = 0.005979x2 − 0.007419x3 + 0.002366x8 + 9.805402 × 10−6x9

− 0.001582x10 + 0.000499x11 + 0.000337x12 − 0.000233x13

+ 0.000041x14 − 1.080754 × 10−9x15 + · · ·
...

Hence, the truncated series solution is obtained as

ψ2(x) = 2x2 + 3.778011 × 10−8x3 − 2x4 + x5 − 4.945957 × 10−8x8

+ 5.013510 × 10−8x9 − 1.529513 × 10−9x10 + · · ·

Similarly, Table 2 shows the comparison of maximum absolute error obtained by
the proposed method (3.9) and MADM (2.9). Once again, it is shown that the proposed
method (3.9) gives better numerical results compared to MADM (2.9). Also note that
the proposed approach avoids extra calculations for unknown constants.

Example 5.3 Consider the nonlinear fourth-order two-point BVPs [43]

u(iv)(x) = u2(x)+ 1, 0 < x < 2,
u(0) = u′(0) = u(2) = u′(2) = 0.

}
(5.6)
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Table 2 Comparison of absolute error of Example 5.2

x Proposed scheme MADM

|ψ1 − u| |ψ2 − u| |ψ3 − u| |φ1 − u| |φ2 − u| |φ3 − u|
0.0 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00

0.2 3.4765E−07 8.1093E−10 2.0993E−12 1.8221E−04 3.5906E−05 5.4492E−09

0.4 8.9392E−07 2.0542E−09 5.2838E−12 5.0909E−04 1.0188E−04 4.3593E−08

0.6 9.9314E−07 2.2272E−09 5.6716E−12 6.5782E−04 1.3579E−04 1.4713E−07

0.8 4.6466E−07 1.0115E−09 2.5474E−12 3.9270E−04 8.5908E−05 3.4784E−07

1.0 0.0000E−00 0.0000E−00 0.0000E−00 2.6689E−13 5.5799E−13 6.3640E−07

We apply the proposed scheme (3.9) to (5.6), with α1 = α2 = α3 = α4 = 0 and
b = 2, we have

u0(x) =
∫ 2

0
G(x, ξ)dξ,

u j (x) =
∫ 2

0
G(x, ξ)A j−1dξ, j ≥ 1.

⎫⎪⎪⎬
⎪⎪⎭

(5.7)

Using the recursive scheme (5.7) and the Adomian’s polynomials (5.3), the compo-
nents are obtained as

u0(x) = 0.166667x2 − 0.166667x3 + 0.0416667x4

u1(x) = 0.000160x2 − 0.000117x3 + 0.000016x8 − 0.000018x9

+ 8.267195 × 10−6x10 − · · ·
u2(x) = 3.604059 × 10−7x2 − 2.635822 × 10−7x3 + 3.181220 × 10−8x8

− 3.063397 × 10−8x9 + 1.042733 × 10−8x10 − 1.237141 × 10−9x11

+ 2.294149 × 10−10x14 − · · ·
...

Hence, the truncated series solution is obtained as

ψ2(x) = 0.166827x2 − 0.166785x3 + 0.0416667x4 + 0.000016x8 − 0.000018x9

+8.277623 × 10−6x10−1.754884 × 10−6x11+1.461372 × 10−7x12 + · · ·

Since the exact solution of this problem is not known. We check the accuracy of the
proposed method (3.9) by means of the absolute residual error function

Rn(x) = |ψ(iv)n (x)− ψ2
n (x)− 1|, 0 < x < 2. (5.8)
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Table 3 Absolute residual error of Example 5.3

x R1 R2 R3 R4 R5

0.0 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00

0.2 5.9135E−08 1.6300E−10 5.0947E−13 1.7131E−15 6.0478E−18

0.4 6.1934E−07 1.7233E−09 5.4082E−12 1.8227E−14 6.4618E−17

0.6 1.9096E−06 5.3564E−09 1.6868E−11 5.6960E−14 2.0155E−16

0.8 3.3403E−06 9.4204E−09 2.9735E−11 1.0054E−13 3.5518E−16

1.0 3.9671E−06 1.1209E−08 3.5413E−11 1.1979E−13 4.2392E−16

1.2 3.3403E−06 9.4204E−09 2.9735E−11 1.0054E−13 3.5605E−16

1.4 1.9096E−06 5.3564E−09 1.6868E−11 5.6967E−14 2.0903E−16

1.6 6.1934E−07 1.7233E−09 5.4082E−12 1.8176E−14 1.3986E−17

1.8 5.9135E−08 1.6300E−10 5.0954E−13 1.7837E−15 7.6653E−17

2.0 0.0000E−00 1.6517E−20 0.0000E−00 1.6611E−20 1.6609E−20

Here the n-term truncated series solution ψn(x) is used in place of u(x) in order to
check the convergence of ψn to u(x), since ψn → u as n → ∞. Table 3 shows the
numerical results of absolute residual error Rn , for n = 1, 2, 3, 4, 5. It can be seen from
the numerical results in Table 3 that the proposed method (3.9) gives the approximate
series solution which rapidly converges to the exact solution as n becomes very large.

Example 5.4 Consider the following fourth-order BVP [7]

u(iv)(x) = −6e−4u(x), 0 < x < 4 − e,

u(0) = 1, u′(0) = 1

e
, u(4 − e) = ln 4, u′(4 − e) = 1

4
.

⎫⎬
⎭ (5.9)

The exact solution is u(x) = ln(e + x).

According to the proposed method (3.10) with α1 = 1, α2 = 1
e , α3 = ln 4, α4 = 1

4 ,
and b = 4 − e. Consequently, we have the following scheme as

u0(x) = 1,
u1(x) = 0.3678794x − 0.0636607x2 + 0.0091938x3 + ∫ 4−e

0 G(x, ξ)A0dξ,

u j (x) = ∫ 4−e
0 G(x, ξ)A j−1dξ, j ≥ 1.

⎫⎬
⎭

(5.10)

The Adomian’s polynomials for f (u(x)) = −6e−4u(x) are calculated as:

A0 = −6e−4u0(x)

A1 = 24u1(x)e−4u0(x)

A2 = (−48u2
1(x)+ 24u2(x)

)
e−4u0(x)

A3 = (
64u3

1(x)− 96u1(x)u2(x)+ 24u3(x)
)

e−4u0(x)

...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.11)
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Table 4 Numerical results for Example 5.4

x Proposed method

|ψ1 − u| |ψ2 − u| |ψ3 − u| |ψ4 − u| |ψ5 − u|
0.0 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00

0.2 1.0633E−04 4.9684E−05 1.6216E−05 4.1012E−06 8.2922E−07

0.4 2.9725E−04 1.4553E−04 4.8810E−05 1.2574E−05 2.5815E−06

0.6 4.1755E−04 21.513E−04 7.4716E−05 1.9762E−05 4.1536E−06

0.8 3.8488E−04 2.0906E−04 7.5644E−05 2.0714E−05 4.5015E−06

1.0 2.1259E−04 1.2175E−04 4.6096E−05 1.3163E−05 2.9868E−06

1.2 2.6523E−05 1.6004E−05 6.3557E−06 1.9026E−06 4.5393E−07

4−e 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00

Making use of (5.10) and (5.11), it follows

u0(x) = 1

u1(x) = 0.367879x − 0.071183x2 + 0.020931x3 − 0.004578x4,

u2(x) = 0.005096x2 − 0.006032x3 + 0.001347x5 − 0.000086x6 + 0.000010x7

− 1.1980808 × 10−6x8 + 5.421010 × 10−20x10,

...

Hence, the truncated series solution is obtained as

ψ2(x) = 1 + 0.367879x − 0.066086x2 + 0.014899x3 − 0.004578x4 + 0.001347x5

− 0.000086x6 + 0.000010x7 − 1.198080 × 10−6x8 + · · ·

Tables 4 and 5 show the comparison of the numerical results obtained by the pro-
posed method (3.10) and MADM (2.9). Once again, we have shown that the proposed
method (3.10) gives much better numerical results compared to MADM (2.9). Also
our scheme avoids solving difficult system of equations for unknown constants.

Example 5.5 Consider the following fourth-order BVP [10]

u(iv)(x) = u(x)+ u′′(x)+ ex (x − 3), 0 < x < 1,
u(0) = 1, u′(0) = 0, u(1) = 0, u′(1) = −e.

}
(5.12)

The exact solution is u(x) = (1 − x)ex .
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Table 5 Numerical results for Example 5.4

x MADM

|φ1 − u| |φ2 − u| |φ3 − u| |φ4 − u| |φ5 − u|
0.0 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00

0.2 1.0633E−02 4.9874E−03 1.6336E−03 4.1883E−04 8.7523E−05

0.4 2.9725E−02 1.4600E−02 4.9088E−03 1.2786E−03 2.6994E−04

0.6 4.1755E−02 2.1563E−02 7.4954E−03 1.9971E−03 4.2833E−04

0.8 3.8488E−02 2.0929E−02 7.5633E−03 2.0753E−03 4.5510E−04

1.0 2.1259E−02 1.2171E−02 4.5895E−03 1.3038E−03 2.9409E−04

1.2 2.6523E−03 1.5969E−03 6.2956E−04 1.8581E−04 4.3270E−05

4−e 0.0000E−00 2.2200E−16 6.8800E−15 2.4400E−15 2.2200E−16

According to the proposed method (3.9) with α1 = 1, α2 = α3 = 0, α4 = −e and
b = 1. Consequently, we have the following scheme as

u0(x) = 1 + (−3 + e)x2 + (2 − e)x3 +
1∫

0
eξ (ξ − 3)G(x, ξ)dξ,

u j (x) = ∫ 1
0 G(x, ξ)

[
u j−1(ξ)+ u′′

j−1(ξ)
]

dξ, j ≥ 1.

⎫⎪⎬
⎪⎭ (5.13)

Using the recursive scheme (5.13), we can obtain the components as

u0(x) = 8 − 7ex + (
6 + ex) x + 2.05595x2 + 0.253745x3,

u1(x) = 20
(
1 − ex)+ (18 + 2ex )x + 7.94309x2 + 2.41262x3 + 0.504662x4

+ 0.0626873x5 + 0.00571096x6 + 0.000302078x7,

...

Hence, the truncated series solution is obtained as

ψ2(x) = 80 − 79ex + 72x + 7ex x − 804.296x2 − 9.33334x3 − 1.99992x4

− 0.333318x5 − 0.0445972x6 − 0.0046668x7 − 0.000402376x8

− 0.000024x9 − 1.13312 × 10−6x10 − 3.814113 × 10−8x11 + · · ·

Table 6 shows the comparison of maximum absolute error obtained by the proposed
method (3.9) and MADM (2.9). It can clearly be seen from these results that the
proposed scheme (3.9) gives better numerical results compared to MADM (2.9).

Remark It can be seen from the numerical results of all five examples discussed in
this section that only two terms are sufficient for obtaining good approximations to
the exact solution.
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Table 6 Maximum absolute error estimate of Example 5.5

x Proposed scheme MADM

|ψ1 − u| |ψ2 − u| |ψ3 − u| |φ1 − u| |φ2 − u| |φ3 − u|
0.0 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00

0.2 3.4867E−05 8.2085E−07 1.9470E−08 2.6734E−03 1.8398E−04 5.0234E−06

0.4 9.4007E−05 2.2181E−06 5.2263E−08 6.4531E−03 4.8317E−04 1.3828E−05

0.6 1.0015E−04 2.2939E−06 5.3189E−08 6.9415E−03 5.6954E−04 1.7483E−05

0.8 4.1852E−05 9.0199E−07 2.0439E−08 3.3275E−03 3.0057E−04 1.0131E−05

1.0 0.0000E−00 0.0000E−00 0.0000E−00 8.8876E−16 5.8845E−15 4.6145E−15

6 Conclusion

In this work, we have proposed a new efficient approach for obtaining approximate
series solution of the fourth-order two-point BVPs. The simplicity, efficiency and
reliability of the proposed recursive schemes (3.9) and (3.10) have been examined
by solving five fourth-order BVPs. The accuracy of the numerical results indicates
that the proposed method is well suited for the approximate solutions of such BVPs.
It has also been shown that only two-terms are sufficient to obtain a comparable
approximate solutions. Unlike the existing methods such as the ADM or MADM,
the proposed schemes (3.9) and (3.10) do not require any computation of unknown
constants, and provides much better numerical results. Furthermore, by comparing
the proposed method with ADM or MADM, we have also shown that the proposed
method gives not only better numerical results but also avoids solving a sequence of
growingly higher order polynomial or difficult transcendental system of equations for
obtaining unknown constants. Unlike finite different method, cubic spline method or
any other discrete methods, the proposed method does not require any linearization,
perturbation or discretization of variables. Finally, we have discussed the convergence
and error analysis of the proposed method (3.9).
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